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ABSTRACT

Data quality is critical for many information-intensiveip
cations. One of the best opportunities to improve data tyuali
is during entry. $HER provides a theoretical, data-driven

foundation for improving data quality during entry. Based

on prior data, \$HERIearns a probabilistic model of the de-

pendencies between form questions and values. Using this

information, UsHER maximizesinformation gain By ask-
ing the most unpredictable questions rstsHERIs better

able to predict answers for the remaining questions. In this

paper, we use BHERSs predictive ability to design a num-
ber of intelligent user interface adaptations that imprda

parikh@ischool.berkeley.edu

entry accuracy and ef ciency. Based on an underlying cogni-
tive model of data entry, we apply these modi cations before
during and after committing an answer. We evaluated these
mechanisms with professional data entry clerks working wit
real patient data from six clinics in rural Uganda. The re-
sults show that our adaptations has the potential to reduce

error (by up to 78%), with limited effect on entry time (vary-

ing between -14% and +6%). We believe this approach has

wide applicability for improving the quality and availaibjl
of data, which is increasingly important for decision-nraki
and resource allocation.

ACM Classi cation: H5.2 [Information interfaces and pre-

sentation]: User Interfaces - Graphical user interfaces.
General terms:  Design, Experimentation, Human Factors

Keywords:
interface, repetitive task

INTRODUCTION
In today's world, says Carl Malamud, “information is a form

of infrastructure; no less important to our modern life than

Data quality, data entry, form design, adaptive
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Figure 1: (1) drop down split-menu promotes the most
likely items (2) text eld ranks autocomplete sugges-
tions by likelihood (3) radio buttons highlights promote
most likely labels (4) warning message appears when
an answer is a multivariate outlier.

where even a single error can have drastic consequences.
One of the best opportunities to improve data quality is dur-
ing entry. Data entry is ubiquitous — organizations all over
the world rely on clerks to transcribe information from pa-
per forms into supposedly authoritative databases. Howeve
many smaller organizations, particularly those operaiing

the developing world, struggle with maintaining high qual-

our roads, electrical grid or water systems” [7]. As such, we ity during transcription. Part of the reason is because they

should be as concerned about thality of our information,

lack expertise in form design, failing to correctly specéid

especially important for critical applications like héattare,
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sources needed for performing double entry — the standard
practice of entering data twice to validate the resultsyene

for doing post hoc data cleaning. For low-resource organiza

tions, data entry is the rst and best opportunity to address
data quality.

UsHERprovides a theoretical, data-driven foundation for im-
proving data quality during entry [10]. Based on prior data,
UsHERIearns a probabilistic model of the dependencies be-
tween form questions and values. Using this information,



UsHERreorders questions to maximiggormation gain By to one of apportioningriction [18] in proportion with answer
asking the most unpredictable questions rsgHERIs bet- likelihood.

ter able to predict answers for the remaining questions. o ) o
Multivariate outlier detection is used for post hoc datanle

The theoretical basis for $HERs multivariate predictive  ing, where data is “cleaned” after it resides in a databa8f [1
model is discussed in [10], along with a set of simulation Our approach is similar, except we weed outliers using adap-
results demonstrating its accuracy on two sample data setstive feedback mechanisnasiring entry, when it is often still

In this paper, we use $HERSs predictive ability to design a  possible to correct the error directly.

number of intelligent user interface adaptations that dan d

rectly improve data entry accuracy and ef ciency. We eval- Improving Data Entry Ef ciency

uated each of these mechanisms with professional data entr{Cockburnet al. modeled the performance of menu interfaces
clerks working with real patient data from six clinics in ru- as control mechanisms [11]. They offer insight on the tran-
ral Uganda. The results show that our adaptations have thesition from novice to expert behavior. We focus on a wider
potential to improve entry accuracy: for radio buttons,ghe  class of input interfaces for expert entry.

ror rates decreased by 54-78%; for other widget types, error i i _
rates fell in a pattern of improvement, but were not statisti 1here have been several efforts to improve data input with

cally signi cant. The impact of our adaptations on entrytcos Modeling and interface adaptation [8, 10, 19, 23, 30, 33, 34,
(time) varied between -14% to +6%. 35, 37]. Most of these have only provided simulation results

of predictive accuracy and improvements in ef ciency.
The speci c adaptations we tested include: 1) setting defau ) ) ) ) ]
corresponding to highly likely answers, 2) dynamically re- Ali and Meek discuss a variety of intelligent approaches to
ordering and highlighting other likely options, and 3) pro- Suggest auto-complete values in text elds for web forms to
viding automatic warnings when the user has entered an unimprove the speed of entry [8]. Yet al. generated type-
likely value. The rst technique changes an entry task to a @head suggestions for collecting conservation data on mo-
con rmation task, which we show has the potential to sig- bile devices based on the location of the user [37]. Her-
ni cantly improve accuracy and ef ciency. The second ap- Mens and Schlimmer set default values in form elds using
proachguidesthe user towards more likely values, and away decision trees [19]. Warreet al worked with medical doc-
from unlikely ones, which we show further improves accu- tors entering diagnosis information into an electronic med
racy. Finally, by warning the user about particularly ualik ~ cal record [33, 34, 35]. They trained models on drugs and

values, we approximate double entry at a fraction of the cost diagnoses to automatically populate a “hotlist” of potahti
drug choices for the provider. Their models rely only on bi-

The rest of this paper is organized as follows. In the next variate relationships between a drug and a single diagnosis
section, we discuss related work. Next, we introducsiER ) ] o )

— the probabilistic foundation of this work. In the fourth All these works were primarily concerned with improving
section, we provide a cognitive model of data entry based ondata entryef ciency. While we have adapted several of
our contextual inquiry, and in the fth section we use that to the specic widgets they have described (setting defaults
motivate a number of speci ¢ intelligent user interfaceda  @nd ranking auto-complete suggestions), our primary goal i
tations. In the sixth section we present the experimentapse  deémonstrating improvement in bottom-line accuracy.

for our evaluation, and in the seventh section we describe th

results. Lastly, we conclude and discuss future work. Adaptive User Interfaces

The literature on adaptive user interfaces discusses éekdb
RELATED WORK mechanisms' behavioral predictability, cognitive conxtig
In this section we summarize the major areas of related work: cost of being wrong, predictive accuracy, and the usergyabil
managing data quality, improving data entry ef ciency, and t0 opt-out of an adaptation [16]. These guidelines were use-

designing dynamic, adaptive user interface widgets. ful for framing our system. We also explored some speci ¢
adaptive widget types discussed in this literature, namely
Managing Data Quality split or ephemeral selection boxes, and enlarging the click

Best practices for form design include specifying pre-deieed able area for more likely options [14, 27, 31, 36].

constraints to reject or warn the user when they enter ille-

gal or unlikely values [32]. More sophisticated survey de- A DATA-DRIVEN FOUNDATION FOR ADAPTIVE FORMS

sign techniques involve inserting additiomabss-validation =~ USHERIs a data-driven foundation for adapting data entry
questions to double-check the accuracy ofimportant eld§[ forms. The theoretical basis ofSBiERs predictive model

For example, adding a “birth-year” question to cross-wid ~ was discussed in [10]. Here, we summarize the aspects rele-
“age”. vant to this paper.

A standard practice in electronic form design is to set lyinar A Model for Any Form

constraints that accept or reject an answer. Consider the exThe goal of an $HER model is simple: given a subset of
ample of using red highlighting to denote that an invalid an- answers for a form, accurately predict values for the unan-
swer has been rejected, post entry. In essence, the erkry tasswered questions. As shown in Figure 2, the model learns
is parameterized with 0% likelihood for the invalid value, a from previously entered form instances to improve entry in
special case of our approach. With ner-grained probabsit  the future. The model itself is a Bayesian network over a
during entry, we generalize the practice of setting coigga  form that captures the relationships between form question



" HS%& conditioned on entered values using the Junction Tree Algo-
1'#$0*/234 gl I'#$ rithm [9].
)02+ + EULIOGESE (Res 9]
L’ 7 X Model Accuracy and Question Ordering
\ Improving the predictive accuracy of the model allows for
7#'5+5)/)3,)( &#'5+5)/),)'3 RV more effective feedback mechanisms. During data entry,

g2l the order of questions in a form will greatly in uence the

model's predictive accuracy. We give an intuitive analogy:

in the child's gamewenty-questionsa responderthinks of

a concept, like “airplane”, and amskercan ask 20 yes-no

questions to identify the concept. Considering the space of

. all possible questions to ask, the asker's success isyvitl
T lated to question selection and ordering — the asker wants

to choose a question that cuts through the space of possibil-

ities the most quickly. For example, the canonical opening

@ question, “is it bigger than a breadbox?” has a high level of
expected information gain — measured as information en-
For forms, UsHER can calculate the entropy for each eld

@ @ ' and automatically create a question ordering, within user-

+-36'#3

speci ed constraints, that gains information as quickly as
possible. This will allow $HER to provide better predic-
tions for later questions. Again, we allow human form de-
signers to specify any required ordering or grouping con-
straints. From a user perspective, asking questions wg hi
information gain rst will be more likely to avoid the typita
pitfalls of repetitive work, where the user's interest iokm

to wane over time [22].

UsHERprovides two different algorithms for question order-
ing: staticanddynamic Thedynamicordering picks the next
best question at runtime, by conditioning the modehotual
observed answers. This approach is suitable for direct elec
tronic data entry, for example when mobile devices are used

Figure 2: USHER components, data ow and proba-

bilistic model: Above are USHER system components for eld data collection [28]. In contrast, thstatic ordering
and data artifacts, with arrows showing data ow; zoom is based on expected conditional entropies before entry and
circle shows the Bayesian network learned from data. is therefore calculated of ine. An organization that rslien

paper forms that are later transcribed would have a dif cult
time arbitrarily re-ordering elds, as data entry clerkfyren

the strict correspondence between the paper and digital ver
sions. In this case, they can periodically re-order the ques
ions on the paper and digital versions of the form based on
he static ordering. It is also important to note that reorde
ing elds is entirely optional. An b HERmMoOdel can provide

epredictions giveranyform ordering.

based on prior data. Learning these relationships for an arb
trary form is the rst step for building this model. The naive
approach would assume compete dependence of each el
on all other elds, but such an approach could lead to both
poor predictions and slow queries. InsteadsHER learns
relationships using a standard machine learning techniqu
called structure learning [21]. Form designers can also-spe OPPORTUNITIES FOR ADAPTATION

ify a priori rglationships and constraints to _be included in the Figure 3 provides a simpli ed representation of the major
model. In Figure 2, we can see the Bayesian network genernysical and/or mental tasks involved in data entry. Thg co
ated for the data set that we used for the evaluation describe nitive model was derived based on our own observation of
later in this paper. professional data entry clerks. It also assumes that thrésise

. transcribing data from paper into an electronic equivalent
USHER estimates the parameters of the network by calcu- g hap g

lating, for each eld, a conditional probability table, vati First, the useacquires question naturgy looking at the
holds the proportion of each possible answer value, given screen for the question number, text, data type, widget
each possible assignment of parent values. To prevent the type, etc.

case of insuf cient data causing zero probabilities androve  Then, the user searches for this question on the paper form
tting, parameter estimates are smoothed. Using this model to acquire the answer from the souraad memorize it.

we infer a probability distribution for unanswered form que Next, the user tries ttocate the answer on screel his
tions given answered ones. More speci callyskER cal- may require a visual scan (for radio button widgets), sitrgll
culates marginal distributions over sets of random vaeisbl and scanning (for drop down menus), or a set of individual
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Figure 4: Two of our study participants.

To design appropriate feedback mechanisms, we workedyglose
over a period of three months with a team of professional
data entry clerks working for an international health and re
search program in Uganda. The purpose of the design phase
was two-fold: (1) acclimate users to our electronic forms im
plementation, so we could ignore any learning effects durin
keystrokes, each separated by a visual scan (for text eldsthe evaluation, and (2) leverage the clerks' experience and
with autocomplete). knowledge to design a better set of feedback mechanisms.
The usecommits the answeafter nding it, typically with

Figure 3: A cognitive task model for data entry. The
vertical spans, on the right, show opportunities for dy-
namic adaptation.

a single physical operation, such as clicking on the “Next” () --NA-- () --NA--
button. _ ,
The user may alseview answer after commit ) Brere ) Birere
Each of these stages creates its own opportunities to iraprov B Kabuyanda O Kabuyanda
data entry accuracy and ef ciency. In this paper, we discuss 0o M () Kikagati ) Kikagati (")
how intelligent interface adaptation can: . -
) Mwizi () Mwizi

() Nyakitunda

1. Before entry, allow the user to preview likely answers, or © Nyakitunda
to convert an entry task to@n rmation task. Figure 5: Alternative designs for radio button feedback:
) (1) radio buttons with bar-chart overlay. (2) radio but-
2. During entry, help the user locate the correct answeren th tons with scaled labels.
screen, and reduce the effort required to enter more likely
values. Working together, we made many interesting design obser-
] ) ___ vations. We include a few of those here:

3. After entry, warn the user to review their answer if it is

likely to be incorrect. Any feedback we provide should be part of the user's

mandatory visual path, by which we mean the locations on
the screen where the usmustlook to complete the task.
We learned this by experimenting with alternative designs
that did not conform to this guideline (on the left side of
Figure 5). The more visually complicated design yielded

Before and during entry, we want ttecreasethe time and
cognitive effort required for transferring an answer froes p
per, to reduce the possibility that the answer is lost from
short-term memory in that period. In contrast, after entry, no signi cantimprovementin terms of accuracy. The users
we want toincreasethe time and cognitive effort spent to explained that because the bar-charts were laid out beside
verify the answer's correctness. Toward these goals, we can the label, they did not have time to consult them. This is

use WLHERs ne-grained probabilities, in each stage of en-
try, to tune the amount dfiction in the input interface in
proportion with answer likelihood.

consistent with our observation that it is important to min-
imize the time between answer acquisition from paper and
con rmation in the interface.



Entry should not depend on semantic understanding oftivated, and thavidgetmechanisms require an integer num-
questions and answers. Through conversation with databer of potentially highlighted or promoted iterks We also
entry clerks, we concluded that there is no time for this need to map each form question to the appropriate widget
type of processing. The users commented that they seeand feedback type. In this section, we discuss how we set
but do not think about theneaningof the answer they are  these parameters.

transcribing. This is consistent with the difference betae ) ) . . .

pattern recognition and cognition, where the latter ineslv ~ Mapping to widgets Mapping of form questions to widgets
potentially expensive access to long-term memory [13]. 1S driven by the observatllon_ that both visual bandwidth and
The visual layout of the form and individual questions Short-term memory are limited to a small numb@r ( 2)
should remain consistent. We experimented with an alter-Of distinct items [25, 26]. When this number is exceeded,
native radio button feedback mechanism that scaled eact{n® potential for user error increases [24]. We mapped ques-
option in proportion with the value's likelihood, as shown tions to widgets based on domain size: for questions with
on the right side of Figure 5. The users felt this mecha- answegr domain that could be shown all at once (domain size
nism was “annoying”. This is consistent with prior work D 2°), we decided to use radio buttons; for questions with
that discusses the importance of physical consistency inansweréjomam that could reasonably tin a scrolling menu
adaptive graphical user interfaces [16]. (© 2°), we chose drop down menus; and for questions
Feedback should not depend on timed onset. Timed in_ywth any larger answer domain, we decided on autocomplet-
teraction techniques like ephemeral adaptation [14] caning text elds.

be effective in other selection contexts. However, for a

. - - . When to tri ? We want the triggering threshotdor de-
repetitive, time-sensitive task like data entry, the detay oo ager ggering

faults and warningsto vary appropriately with the domain

accuracy tradeoff is frustrating. . . size. We formalize this simple notion as follows, with do-
Feedback should be accurate. Speci cally, when warnings .\ -iv. si-eD and a constarg:

or defaults are triggered too frequently, these mechanisms

feel untrustworthy. One user complained about this in our t=a=D:a> 0

early trials, saying that the “computer is trying to fool ine.

Indeed, Gajo®t al. found that user behavior can change Qpserve that whea = 1, the threshold is set to the like-
based on predictive accuracy [15]. lihood of a value in the uniform distribution. For example,
we can sef = 1:5 for defaultsso that an answer to a bi-
nary question needs 75%con dence to trigger setting the
Befault value. Similarly, if we sea = 0:1 for warnings a
¥varning will be given when the chosen answer ka$%
con dence.

Feedback Mechanisms
Here we present the adaptive feedback mechanisms that w
implemented and tested based on user feedback from earl
trials. These mechanisms are shown in Figure 1.

defaults A default is automatically set when the expected
likelihood of a value is above a threshdldin our evalua-
tion, we set this threshold to 75% for binary radio buttons.

How many values to show? We veried this notion with

a baseline experiment in which the data clerks entered ran-

. : X domly picked dictionary words. We varied the number of

widgets We implemented a set of feedback mechanisms . iiqng teedback positionshown in our three widget types,

for speci ¢ widget types. found thatfeedback positiok to be strongly related to both

— text autocomplete The ordering of autocomplete sug- error rate R2 > 0:88)) and entry durationR2 > 0:76). We
gestions are changed from an alphabetical ordering toyse this intuition and specify as follows:

a likelihood-based ordering. For example, in Figure 1,
“Asiimwe” is a popular name in Uganda, and so is ranked k = min (7; ceiling (logs(D)); b > 1
rst, even though it is not alphabetically rst.

— drop down A split-menu is added to the top of the menu, The constant 7 is the maximum visual channel size; the log
copying the most likelyk answer choices. In Figure 1, basebis a constantD is the question's answer domain car-
the most conditionally likely parishes are in the split- dinality. For instance, we can det 3.
menu.

— radio: k radio button labels are highlighted according to 1able 1 shows a range of answer cardinalities and resulting
the likelihood of the answers. After trying a few alterna- Number of feedback positions as determined by our parame-
tive designs (Figure 5), we decided to simply scale the €rization heuristics.
opacity of the highlights according tdag,-scale [26]. USER STUDY

warnings A warning message is shown to the user when To evaluate these adaptive, data-driven feedback mechanis
the likelihood of their answer is below some threshbld e conducted an experimental study measuring improve-

In our evaluation, we set this threshold to 5% for binary ments in accuracy and ef ciency in a real-world data entry
choice radio buttons. environment.

Feedback Parameterization Context and Participants

As mentioned above, we parameterize each feedback mechafo conduct this research, we collaborated with a health fa-
nism with the question's conditional probability distrimn cility in a village called Ruhiira, in rural Uganda. Ruhiira
over the answer domain. In additiosefaultsandwarnings is actively supported by the Millennium Villages Project [1
require a thresholtlto determine whether they should be ac- (MVP). MVP conducts multi-pronged interventions in health



Domain size # feedback pos. Widget

2 1 radio button
4 2 radio button
8 3 radio. or drop down
16 3 drop down
32 4 drop down
64 5 drop down or autocomp.
128 5 autocomp.
256 6 autocomp.
512 7 autocomp.
> 1024 7 autocomp.

Table 1: Example answer domain cardinalities map to
the number of appropriate feedback positions and the
appropriate data entry widget.

agriculture, education and infrastructure to reduce pggver

Sub-Saharan Africa. The MVP health team in Ruhiira (also

serving six surrounding villages), implemented an Open-

MRS [6] electronic medical record system (EMR), but lack

the resources and expertise necessary to ensure data qual-

ity in EMR data entry. To address these limitations, we

are working closely with the health facility management and Figure 6: Results of the ordering experiment: x-axis
staff to design both long-term and short-term strategies fo measures the number of questions “entered”; y-axis
improving data quality and use. plots the percentage of remaining answers correctly

. - . redicted.
The six study participants were professional data entiksle P

working at this facility, entering health information on aily

basis. These are the same clerks that we observed to obtain . ) ) )

the insights described in prior sections. Prior to the study accuracy under 4 different question orderingsatic, dy-
each of them became pro cient with our electronic forms in- Namic, originalandrandom Our experiment simulated a

terface. scenario in which a data entry clerk does not nish enter-
ing a form. In Figure 6, the x-axis represents the question
Forms and Data position at which entry was interrupted. At each stopping
Widgettype  # questions  Answer domain sizes point, we use the model to predict the answers for the rest of
radio button 21 725 the questions. The y-axis shows the resulting accuracy. We
drop down 4 6-8 see that theriginal ordering does better thalandom but
autocomplete 5 >100 underperforms WHERS optimized information-theoretic or-

derings. The evaluation described in the next section isdbas

Table 2: “Adult Outpatient” form and dataset questions. on astaticordering.

Data and forms came directly from the health facility's EMR. gy gtem

For this evaluation, we used a form that is lled out during We built a web application using Java Servlets and Adobe
an adult outpatient visit. We randomly sampled 3388 patient ; PP o 9 ; :
Flex (see Figure 2). This included a Java implementation

visits to train an $HERmModel. From the form, we removed of USHER running inside a J2EE application server. The
the questions that are rarely answered, such as those:ctelateUS|_|ERmRO’del wasgbuilt of ine and surﬁfnarized ina Ba.esian
to medications that are not actively stocked. About half of f File (BIF) f t instantiated inal ty

the questions we chose described patient demographics anifference File (BIF) format, instantiated as a singletoorup
health background, while the rest asked about Symptoms,requestérpmthe cI|erf]t. The optimized q“ff“;}’(‘ O{dgrlggdwa
laboratory tests, diagnoses and prescriptions. We mappe alp)tlr_[(e Inan X'V”-dor!”” Spect cqt|or|‘1,l;/v||cd|ncu ea de-
the questions to widgets according to answer domain size &S like question ordering, question labels, data typeéds
speci ed in Table 1. More details about the data set can beget types and answer domains.

found in Table 2. During data entry, the web form interface collected an an-

An USHER Model for Patient Visits swer from the user and submitted it to thestER model.
The zoom circle in Figure 2 graphically depicts theHER The model then calculated the conditional probabilityriist
model resulting from structure learning on thiatient visit ~ bution for the next question, resulting in likelihood vasuer

dataset. The edges denote correlations between pairsiof var €ach possible choice. These probabilities were embedded in
ables. a XML question fragment that was rendered by the client-

side code, which prompted the user to answer the next ques-
After learning the model's parameters from our dataset, wetion. All adaptive feedback mechanisms were implemented
conducted a simulation experiment to evaluate its pradicti  within this client-side code.



Task Accuracy

A set of 120testform instances were randomly drawn from To analyze the impact on entry accuracy, a mixed effect gen-
the EMR. These instances were withheld from traéning eralized linear analysis of variance (ANOVA) model was t-
set used to build the model described in the previous sec-ted using SAS procedure PROC GLIMMIX for determining
tion. We printed out these form instances on paper. To morethe effect of feedback types. A Bernoulli distribution with
closely mimic a real form, we used a cursive “script” font in logit link was speci ed for modeling the binary response
the printout for answers that are typically handwritteneTh of correct/incorrect entry for each question. The model in-
electronic forms were presented to the user as a web tabl€luded widget type, feedback type, and their interaction as
with 120 links. During the study, participants were instast ~ xed effects, and the participants as a random effect for ac-
to click each link, enter the form serial number printed &t th counting for the variation between testers. Dunnetts cerre
top of the form, and to perform data entry as they normally tion was applied to adjust for multiple-comparisons adains
do for each form. theplain feedback variation.

The effect of adaptive feedback mechanisms on error rate are
summarized and compared itain at both the overall level
Table 3) and by each widget type (Table 4). Each error rate
shown was estimated by its least square mean.

Procedure

The study was set up as follows: participants sat at a des
and transcribed answers. Participants used their exidtitey
entry client machines: low-power PCs running Windows XP
with 256MB of RAM, and a full-sized keyboard and mouse. Tables 3 shows the error rates of each feedback mechanism,
Each PC had an attached 12" color LCD display. The clients and compare each experimental mechanismpla (using
connected via LAN to a “server” that we provided: a dual- a one-tail test for lower error rate than thatéin). The
core, 2.2 GHz MacBook Pro laptop with 4G of RAM. To mit-  widgetandwarningmechanisms improved quality by 52.2%
igate power concerns, we relied on existing solar power andand 56.1%, with marginal signi cance. The improvement by

a gasoline generator. Besides this, the working conditionsthe defaultsmechanism was not statistically signi cant.
were arguably not too different from that of any cramped of-

ce setting. Feedback type Errorrate vglain Adj. p-value

. . . . plain 1.04%
We conducted the study in 2 sessions, in the morning and af-  §efaults 0.82% -21.0% 0.497
ternoon of a single day. All six clerks were available fortbot widgets 0.50% -52.20% 0.097
entry sessions. In each session, participants enteredras ma warnings 0.45% -56.1% 0.069

form instances as they could. Ideally, we wanted the data —
clerks to treat the study like their normal work. As such, we ~ Table 3: Mean error rates for each feedback variation
employed an incentive scheme to pay piece-meal (500 USH  (across all widget types) and comparisons to the plain
or 0.25 USD per form) for each form entered. We also con- control-variation.

strained the cumulative time allotted to enter all the farms
We felt this most closely matched the clerks' current incen-
tive structure.

Breaking down the results by widget type leads to more sta-
tistically signi cant ndings. Table 4 shows accuracy re-
sults for each of thautocompetedrop downandradio but-
tonswidget types. Each feedback mechanism improves ac-
curacy in form elds with radio button widgets: the high-
éighted radio button labelMidgetg and thewarningsmech-
anisms achieve 75% and 78% respective decreases in error
%, with statistical signi cance. Thdefaultsmechanism was
marginally signi cant with a 53% decrease in error %.

Our primary experimental variation was the type of feedback
mechanism employedtefaults widgets warningsandplain
(meaning no adaptive feedback). For each form entered, on
of these four variants was chosen randomly by the system
For setting default values, we get 1:5=D. For example,
when making a binary choice, if the most likely answer has

likelihood> 0:75, we set that answer to be the default value. As expected, the error rate tended to increase with the ize o
For triggering warnings, we sét= 0:1=D. For example,  the answer domain for each widget. For thep downand
when maK|ng a blnary' Ch0|.Ce, if the likelihood is less then autocomplet@vidgets' we observed some improvements in
0:05, we trigger a warning dialog. accuracy, although given the rarity of errors, statistiigt

ni cance was not observed due to the limited number of tri-
“als and participants. Table 2 shows that there were fewer
questions in the original form that mapped to these widget
types. In general, studying rare events like data entryrerro
requires a very large number of trials before any effect can
be observed. We further discuss the challenges inherent in
studying entry errors below.

For each question that was answered, we collected the fol
lowing information: answer, correct answer, duration, and
feedback provided for each possible answer option. At the
end of the experiment, the data clerks each lled out a survey
about their experience with the system.

RESULTS
In total, we collected 14,630 question answers from 408 form Correct vs. Incorrect feedback

instances. The 4 feedback types were randomly assignedVe want to investigate the impact of incorrect feedback, We
across form instances, with the Widgets type receiving dou-de ne correctas when the true answer is set as a default or
ble Welghtmg: the. sample sizes \.Nqﬂalr.] 84, defaults79, 1The drop downwidget with defaultsfeedback was the only trial that re-
Warn|n9588,' andmdggtslS?. In this section, we presentthe  syited in an error rate higher than thanpiéin. A separate two-tail test
results of this evaluation. showed that this difference was also not signi cgmt(0 :65).




Widgettype  Feedback Type Errorrate ypéain  Adj. p-value # wrong/# total

plain 0.99% 22/1760
. defaults 0.46%  -53.04% 0.0769 9/1659
radio button widgets 0.25% -74.77% 0.0005 10/3297
warnings 0.22% -77.89% 0.0034 5/1846

plain 0.47% 21334
defaults 1.09% 130.45% 0.9645 4/316
drop down widgets 0.26%  -44.50% 0.5041 2/628
warnings 0.23% -51.19% 0.5055 1/350

plain 2.37% 107336
defaults 1.09%  -54.24% 0.2118 41316
autocomplete oo 1.85%  -21.98% 0.5135 14/628
warnings 1.85% -21.92% 0.5494 8/352

Table 4: Mean error rates for each widget type with break down by feedback type; as well, comparisons to the plain
control-variation.

included as one of th& promoted choices, and when the magnitude higher than in th@ain experiment. Indeed, this
user is warned after entering an actually incorrect answer.is the reason whgefaultsdo not perform as well as the other
We de neincorrectas the converse of this, and ignore cases feedback mechanisms. The result suggests that when users
when there is no adaptive feedback. To do so, we ta similar are presented with an automatic commitment to an incorrect
ANOVA model as above for each feedback type, but with one value, then tend to accept it. Two things are happening: 1)
exceptionwarningsfeedback given on correctly entered val- when defaults are set, the user is primed with a candidate an-
ues (false positives) exhibited a 0% error rate, which cduse swerprior to theacquire answer from sourcgtep, causing

anomalous model estimates. Instead, fontlagningsvaria- a potential for confusion; 2) defaults transform an entskta
tion, we used Fisher's exact test to determine statistigal s into a con rmation task, which is easier (next Subsection),
ni cance. Analysis results are shown in Table 5. but more error prone.
Error rate: feedback The impact of incorrect feedback favidgets on the other
Feedback type| correct incorrect* Adj. p-value han_d, is negligible: we can see that incorrect feedba_ck does
defaulis 0.10% 10.97% 0.0001 not increase the error rate much beyond pkeen baseline.
widgets 0.28% 0.84% 0.0171 These during-entry adaptations stay within Itbta;te answer
warning 52 94% 0.00% 0.0001 on screerstage, and leaves the user to commit to an answer
each time?
Table 5: Error rate when the feedback mechanism is
correct versus when it is incorrect. Each comparison Whenwarningsgive incorrect feedback, users receive false
between correct and incorrect feedback is statistically alarms on correctly entered values. Observe that the error
signi cant (adjusted p < 0:09). rate in this situation is 0%. It would appear that users, tgvi

) o committed to a value, are unlikely to change it on a false
For each experimental variation, as expected, we see thagjarm.

when the feedback mechanism promotes the correct answer,
the observed error rate is quite low fdefaults 0.1%, and Effort
widgets 0.28%. As well, the error rate is quite high for ~ Feedback type Duration (sec) pkin Adj. p-value

warnings 53%. Forwarnings when feedback igorrect plain 2.812

that is, a wrong answer is “caught” by the warning mecha- defaults 2420 -13.93% 0.0001
nism, the observed 53% error rate means that 47% of these warnings 2.995 6.49% 0.0001
potential errors were corrected. This may seem less than op- widgets 2.787 -0.89% 0.8391

timal, but given the low baseline error rate, a warning isimuc Table 6: Mean time per question (seconds, estimated

more likely to be a false positive for an unlikely answer than  p/ east square mean), and comparison to 'plain vari-

an actual input error. In our evaluation, we invoked warsing ation, for each experimental variation.

when the entered answer had less thd®%=D likelihood,

and still only 8.7% of the warnings were issued in the case The effect of our feedback mechanisms on the amount of
of actual user error. Given such a large number of false pos-me required to answer a question is summarized in Ta-
itives, and the low baseline error rate, even catching Half 0 1o 5 A mixed effect ANOVA model with the same xed and
the errors during the warning phase can signi cantly im@rov  5n4om effects as described in the Accuracy subsection was
data quality. used to compare the duration between feedback types. We

When the feedback mechanism promotes an incorrect answePPServe thatefaultsled to a14% faster average question
(a false positive), the results are quite different acresslf ~ completion time. We did not observe a statistically signi -
back mechanisms. Fdefaults incorrect feedback mean that ant difference fowidgets Both results are in accordance

awrong Val!Je i_S pre-set while the usaquires th_e question 2y this logic, the only reason not to provide evaore feedback is to
nature In this situation, the observed error rate is an order of maintain user trust.




with our goal of reducing the time required to go from pa- a contextual inquiry to understand the source of thesesrror
per to electronic. In thevarningsexperiments, we expected was exceedingly dif cult. It is hard to ever directly observ

a slow-down, and found a small (6%) statistically signi tan an error being made, especially because the enterer is being
increase in effort. The key conclusion is that our adaptive observed. Moreover, because the phenomenon we wanted to
feedback mechanisms can moderately affect the amount obbserve is so rare, it meant we had to conduct many more tri-
time required to enter a form, and each adaptation comesals to obtain statistical signi cance. We even experimdnte
with a particular exchange rate when trading off effort vs. with various ways of increasing the error rate (do not pun-

quality. ish wrong answers, constrain the time even further, etd.) bu
found that each of those approaches led to aberrant behavior
DISCUSSION that was not consistent with normal data entry practice.

Every Error Counts

Our baselinglain -form gave an error rate of 1.04% . What CONCLUSION

might this mean, given that our data is used for critical We have presented a set of dynamic user interface adaptation
decision-making? Consider the estimated 350-500 million for improving data entry and ef ciency, driven by a princi-
cases of malaria in 2007 [2]. Taking the low-end estimate, if pled probabilistic approach. We evaluated these techsique
just half resulted in a clinic visit, and on the visit form,ia-s ~ with real forms and data, entered by professional data entry
gle question recorded malaria-status, then approximat8ly  clerks in Ruhiira, Uganda. Our results show that these mech-
million® patients' malaria status could be misrepresented in anisms can signi cantly improve data entry accuracy and ef-
the of cial records due to entry error, putting their oppert ciency. Our next step is to develop a version of this system
nity to receive drugs, consultation or follow-up at risk.@pe  that can work with existing data collection software on mo-
in mind thateach eld, on average, could have 1.8 million bile phones. We expect that a large number of ongoing mo-
mistakes. In this admittedly contrived example, our adapti  bile data collection projects in the developing world [354,
feedback mechanisms could reduce the number of at-risk pawill bene t from this approach. Early discussions con rm
tients by more thahalf. this intuition.

Room for improvement Next, we plan to adapt this approach to the related problem

Data quality is taken very seriously in the high-resourge sc 0f conducting online surveys. Here, we will have to deal
ence of clinical trials, which relies heavily on the praetic ~€xplicitly with potential for usembias resulting from adap-

of double entry [12, 20]. One study showed that double- tive feedback. This concern is mitigated fiotermediated
entry reduced the error rate by 32%, from 0.22% to 0.15% entry, where the person doing the entry is typically not the
(p < 0:09), but increased entry time by 37%, when com- Same as who provides the data. We also plan to explore how
pared to single-entry [29]. As a point of comparison, our USHERS predictive model can be used to detect problematic
results demonstrate the potential for greater relativedvgy ~ User behaviors, including detecting user fatigue saiis c-
ment in accuracy, andecreasen entry time. However, due  ing, where a respondent does just enough to satisfy form re-
to the operating conditions, the error rates we observerare a quirements, but nothing more [17]. In general, we believe
order of magnitudehigher than those of the clinical trials. this approach has wide applicability for improving the gual
We believe the error rates we observed are suppressed duéy and availability of all kinds of data, as it is becoming in

to observer-effects, and that actual error rates may be evergreasingly important for decision-making and resource-all
higher. cation. We look forward to exploring more such applications

in future research.
Generalizability
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