
CAM: A Mobile Interaction Framework for Digitizing Paper
Processes in the Developing World

Tapan S. Parikh, Paul Javid
Department of Computer Science

University of Washington
Seattle, WA 98195-2350 USA

tapan@cs.washington.edu

ABSTRACT
During our work with community microfinance groups in ru-
ral India, we found that paper plays a crucial role in many
local information practices. However, paper-based record-
keeping can be inefficient, so we need to link paper with the
flexibility of modern information tools. A mobile phone can
be the perfect bridging device. Here we present the CAM
mobile document processing system, in which a camera phone
is used as an image capture and data entry device. Our sys-
tem is able to process paper forms containing CamShell pro-
grams - embedded instructions that are decoded from an elec-
tronic image. By combining 1) paper, 2) audio, 3) numeric
data entry, 4) narrative scripted execution and 5) asynchronous
connectivity, we have synthesized our experience into a sys-
tem that we believe is well-suited for an important set of
users and applications in the developing world.

INTRODUCTION
During our work with community microfinance groups in ru-
ral India, we found that paper plays a crucial role in many
local information practices [2]. It is used ubiquitously as a
method of data storage, exchange and establishment of trust
between two transacting parties. It is a medium that the local
people own and trust, and provides a greater sense of security
than rented or borrowed appliances.

The mobile phone has been shown to be the most likely mod-
ern digital tool to support economic development in develop-
ing nations. The growth of mobile phone use in China, India
and Africa resembles the growth of the Internet in the de-
veloped world in the 1990s. As shown in the example of
Grameen Phone, if a mobile phone is shared by a group of
people, it can be afforded by even the poorest communities.

In this paper we introduce mobile document processing as
an accessible and locally harmonious way to provide infor-
mation services to the developing world [1]. In our sys-
tem a camera-equipped mobile phone is used for image cap-
ture and data entry. Document interaction is specified using
CamShell - a narrative document-embedded programming

language that allows developers to add interactive audio, data
entry, validation, processing, and networking instructions to
otherwise inert paper documents.

THE CAM USER INTERFACE
CAM unites a user interface, a programming language and
a delivery mechanism for accessing networked information
services. Like the web, our goal is to allow many different
services to be developed and deployed on a common infras-
tructure.

CamBrowser
The CAM client application is called the CamBrowser, and
has currently been implemented for Nokia Series 60 cam-
era phones. CamBrowser is designed to process specially
designed CamForm documents. CamForms contain visual
codes - two-dimensional data glyphs containing up to 76-
bits of data that can be decoded from a camera image [3].
Visual codes serve as references to interactive content em-
bedded within CamForms.

CAM interaction consists of two primitives. The user can
either scan codes from low-resolution images taken by the
viewfinder in real time, or click codes by taking a high-
resolution image using the joystick button. Our focus was
on designing a simple and intuitive interaction model with
well-defined affordances between actions.

CamShell
CamShell is the programming language that is used to de-
fine the interaction with visual codes embedded in the form.
There is one visual code in every CamForm that serves as a
form identifier. This code always has a 0 as the lowest-order
bit. The next 4 bits identify the form to the CamBrowser
application. The form identifier is used to load the form de-
scription schema, an XML file containing metadata about the
form and specifying the underlying data elements (including
any default or pre-existing values). The protocol that should
be used to load the schema file (currently either HTTP, blue-
tooth or the local filesystem), and the required information
to find the schema (a network address or a file name), is in-
cluded in the remaining bits of the form identifier.

Visual codes with a lowest-order bit of 1 are action codes.
Each action code invokes a separate callback function when
it is clicked or scanned. These callbacks are mapped to
a set of code entry points specified as XML elements in
the form description schema. These XML elements contain



the executable code that should be invoked when the call-
back is activated. The executable code itself is written us-
ing a simple scripted programming language that includes
support for function calls, control flow, arithmetic and basic
datatypes [4].

CamShell provides an API for accessing the mobile phone’s
functionality - including the phone’s user interface, network-
ing and telephony features. Listed below are the main func-
tions currently included in this API:

• User Dialogs - These instructions launch various user di-
alogs used to collect data, get confirmation or convey a
message to the user. Each dialog can also be associated
with audio and graphical prompts. Audio feedback has
been found very useful by potential users.

• HTTP Post, Get - These instructions are used to make
HTTP requests using the phone’s built-in connectivity.

• SMS, MMS, Email - These instructions transmit asyn-
chronous network messages. In the case of MMS and
Email the current form image can also be attached.

• Phone Call - This instruction is used to make a phone call
to a particular number.

• Applications - These instructions are used to launch other
applications, such as the Web or WAP browser.

Each callback function can contain any number of sequential
actions, some of which may be executed conditionally. Con-
ditionals are useful when performing form validation. An
example callback function is given below.

<function name="u_click" params="param1">
seq = input_int("Please input Form ID");
if (!seq) return false;
uri = "http://abc.com/reload.php?"

."seq=".seq;
return http_get(uri);

</function>

CamForms
Although there is nothing in the specification of visual codes
or CamShell that dictates how CamForms should be orga-
nized, there is a convention that we have been developing
to build a consistent and understandable metaphor for users.
CamForms are conceptually organized into the following
three sections:

• Header - The header contains the form identifier code and
other codes containing static data (for example identify-
ing the sequence number of a particular form instance).
Header codes need to be clicked only once at the begin-
ning of a form interaction. A default form action can be
included that triggers all default data entry tasks.

• Body - The body contains input codes that are like HTML
input tags. These are co-located with form fields, and
are used to transcribe data from the document using the
phone’s keypad. To edit a form field the user must click on
the input code, which brings up an editable dialog window.
When a set of input codes is clicked together in one image,
their respective dialogs are displayed in sequence. When
the CamBrowser scans a visual code, the value returned

by the associated scan callback function is shown on the
screen. This is usually the value of the field.

• Buttons - Buttons are codes identified by text and/or icons
that allow the user to perform various actions. Some ex-
ample actions include submitting the form data to a web
server, reloading the data from an online source or voiding
the currently stored data for the form.

USABILITY EVALUATION
We conducted an initial evaluation of a prior version of this
system [1] with microfinance staff and group members in ru-
ral Tamil Nadu. This helped us identify the basic usability
issues, many of which have been rectified in the current de-
sign. The users’ response to the system was very positive,
particularly when compared to our earlier experience design-
ing a PC interface for a similar user population [2].

We are now conducting a more detailed evaluation for simple
data entry tasks using both CAM and a web-based interface
on a PC. We are making this comparison because the alter-
native to CAM is that data is collected on paper forms in
the field and entered using a PC at the branch office. A mo-
bile interface is preferred because it would allow field staff
to enter data as it is generated in the context of their regular
documentation activities. If we can demonstrate that CAM
has comparable efficiency, accuracy and learnability to a PC-
based system, without a significant increase in cost, it could
have important ramifications for the microfinance industry.

Current mobile data entry interfaces are known to be inef-
ficient and difficult to learn. Much of this difficulty is due
to the limited screen space of mobile devices, which makes
navigation between different tasks and fields difficult. Our
system addresses this issue by expanding navigation to the
physical domain of paper documents.

CONCLUSION
In this paper we have described a mobile interaction frame-
work for bringing information services to the developing
world. By combining 1) paper, 2) audio, 3) numeric data en-
try, 4) narrative scripted execution and 5) asynchronous con-
nectivity via the medium of an increasingly ubiquitous mo-
bile device (the mobile phone), we have synthesized our ob-
servations into a usable and locally harmonious system that
we believe is well-suited for an important set of users and
applications in the developing world.

REFERENCES
1. T. S. Parikh. Using mobile phones for secure, distributed

document processing in the developing world. IEEE Per-
vasive Computing Magazine, 4(2):74–81, April 2005.

2. T. S. Parikh, K. Ghosh, and A. Chavan. Design stud-
ies for a financial management system for micro-credit
groups in rural india. In CUU ’03: Proceedings of the
2003 conference on Universal usability, pages 15–22,
New York, NY, USA, 2003. ACM Press.

3. M. Rohs and B. Gfeller. Using camera-equipped mobile
phones for interacting with real-world objects. In A. Fer-
scha, H. Hoertner, and G. Kotsis, editors, Advances in
Pervasive Computing, pages 265–271. Austrian Com-
puting Sociery (OCG), Vienna, Austria, 2004.

4. Simkin language, May 2005. http://www.simkin.co.uk/.


